

Welcome to the CETPartnership Annual Conference!

We will start at 13:00 CEST

Voices of Transition: CETPartnership Projects
Driving Europe's Energy
transition - Project
Presentations

Practicalities

 The meeting will be recorded, and the recording will be published for future watching

• Online data declaration: Please be aware that your name will be displayed in the list of participants as well as in the chat window

 Please ask questions to the presenters in the Q&A session

13:00 - 13:10	Welcome & Introduction
13:10 – 14:00	Project Presentations I PVT4EU - Gintare Vilke STORE — Jiahe Chu RENvolveIT — Javier Valdes
13:55 - 14:10	Coffee Break
14:10 – 14:40	Project Presentations II ELECTROMET — César Escobar Claros LEG-DHC — Hussein Mroueh Man0EUvRE — Siri Mathisen
14:40 - 15:20	Q&A Session in 2 breakout rooms
15:20 – 15:25	Wrap-up by the moderators
15:25 – 15:30	Outlook to Day 2

PVT4EU

Photovoltaic and Thermal for Europe

Gintare Vilke

MG Sustainable Engineering AB

Introducing our Project & Consortium

PVT4EU - Photovoltaic and Thermal for Europe

Funding	CETPartnership Joint Call 2022 Joint Call 2022 TRI4 – Efficient zero emission Heating and Cooling Solutions Call module 4: Heating & Cooling
Budget	1.1 M€ (0.88 M€)
Partners	6 Institutions Industry: 3 Research: 1 Academia: 2
Start date	01 September 2023
End date	31 August 2026
Proposal ID	Cetp-2022-00403

Introducing our Project & Consortium

Project coordinator

- Project management.
- Technical coordination.
- Communication and Dissemination
- Exploitation plan.

University of Gävle

- Review of novel PV cells for PVT-MG collector.
- Final configuration of PV cells technologies (PVT-SOL).
- Assessment of spectral splitting response of PV cells.
- Scaled sample testing of PV cells.
- Conjugated CFD simulations for PVT-SP.
- Synergic configuration of the thermal and electrical management strategies.

SolarPeak

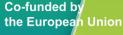
PVT-SP collector producer

- Thermal management strategies.
- Design and simulations (active and passive cooling strategies).

National Laboratory of Energy and Geology

- Thermal efficiency enhancement review and selection for testing.
- Optical performance evaluation of PVT-SOL.
- Spectral splitting by simulation.
- Testing protocol definition.
- Final testing of V2 PVT prototypes.
- Industrial applications and their control strategies requirements definition.
- System level simulations contributions.

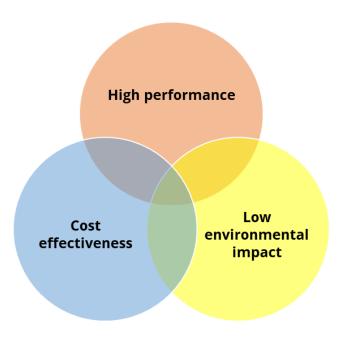
Solarus


PVT-MG collector producer

- Impact assessment and market uptake.
- KPIs and the methodology to evaluate the PVT systems' impact.
- Market roadmap including the future plan of action.

Technical University of Denmark

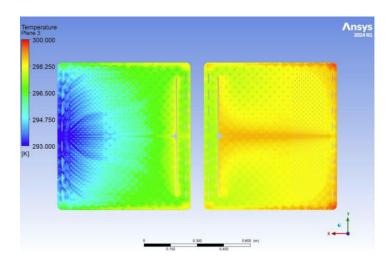
- Testing protocol definition.
- First stage testing of collectors.
- Identification of design enhancements opportunities.
- System level simulations.
- Residential applications and their control strategies requirements definition.
- Eco-design recommendations.
- Intelligent control strategies development and simulations.

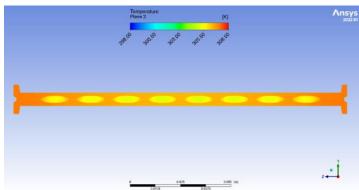


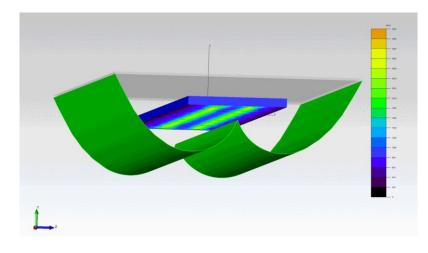
PVT4EU aims to develop/upgrade two PVT technologies:

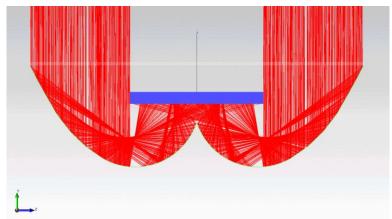
PVT-SP
PV panels retrofit
Residential applications
(< 60°C)

Target


PVT-MG
Industrial applications
(< 140°C)






CFD simulations for absorber design

Optical performance evaluation

PV cells scaled samples testing

Testing

Testing

Our Goals & Expected Impact

Accelerate the deployment of **Photovoltaic-Thermal (PVT) technologies** as a reliable solution for efficient, zero-emission heating and cooling in Europe.

Develop NextGen PVT tech

Enhance performance

Boost efficiency with spectral splitting

Target different applications

Integrate ecodesign into development

Establish European innovation Network

Our Expected Impact

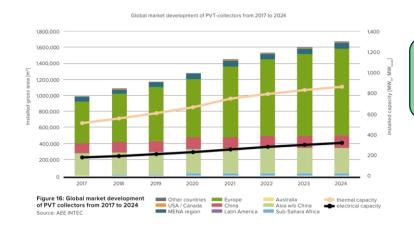
Energy Sector:

- Facilitate the integration of solar heat & power into different applications.
- Enable greater flexibility and grid support by combining thermal storage with PV generation.

Industry:

- Stimulate innovation and competitiveness among European SMEs
- Reduce production and installation costs through design simplification and scalable manufacturing approaches.
- Support new business models for local energy communities and service providers.

Community & Society:



- Contribute to lower energy costs and emissions for buildings and industries.
- Foster green jobs and skills in the renewable heating and cooling sector.
- Raise awareness and acceptance of PVT as a mainstream renewable technology.

Our project in the perspective of the Clean Energy Transition

SYSTEM-WIDE IMPACT AND CONTRIBUTION TO POLICY

PVT technologies still need to enhance their competitiveness and **expand their applications to other sectors**.

PVT4EU provided **evidence-based insights** to inform national and EU-level **heating and cooling roadmaps** and contributes to ongoing **standardization efforts** for hybrid solar systems.

ADDRESSING FUTURE UNCERTAINTIES

Address the awareness gap and foster innovative PVT systems throughout Europe and beyond by connecting stakeholders.

By fostering collaboration across academia, industry, and policy, the project builds **adaptive capacity** to sustain impact despite evolving technological and socio-economic conditions.

Thank you!

Iván Acosta Pazmiño, Ph.D.

Head of Engineering

MG Sustainable Engineering, Sweden

Honorary Researcher

Clean Energy Processes Laboratory Imperial College London, *UK*

Director

Red de Investigación en Energía Solar, *Ecuador*

STORE

Jiahe Chu, Institute of new Energy Systems, TH Ingolstadt

Introducing STORE & Consortium

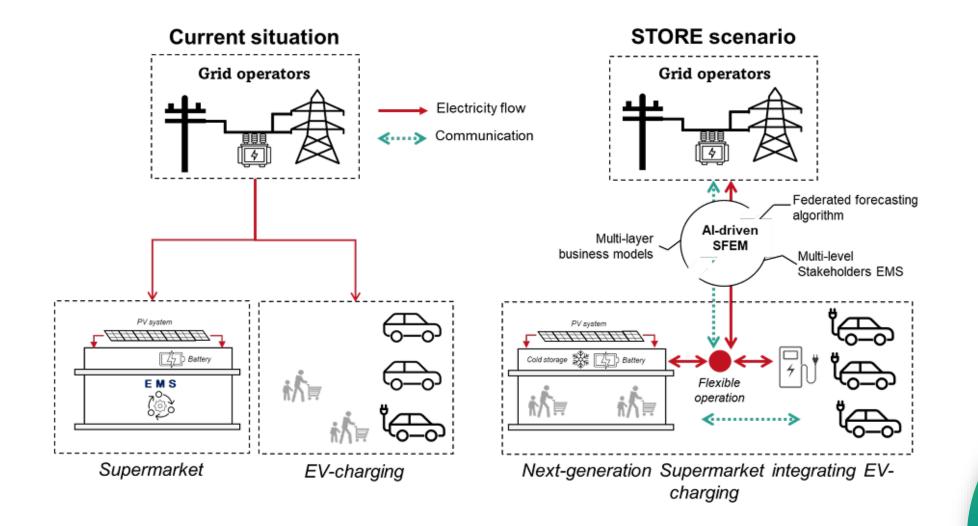
"Grid <u>s</u>tability <u>t</u>hrough AI-d<u>r</u>iven <u>e</u>nergy system integration: Supermarkets as flexible prosumers"

Mediterranean Europe Cyprus

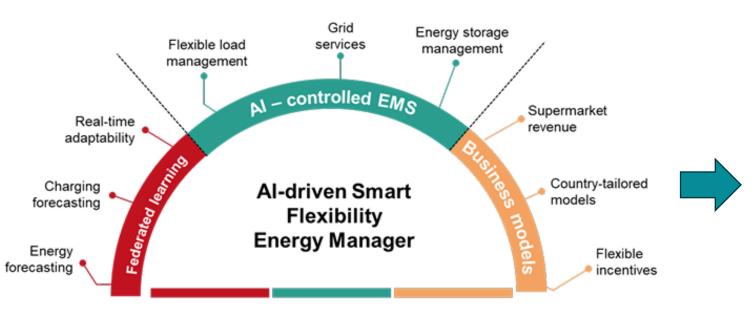
Central Europe Germany

North Africa Tunisia

Institute of new Energy Systems

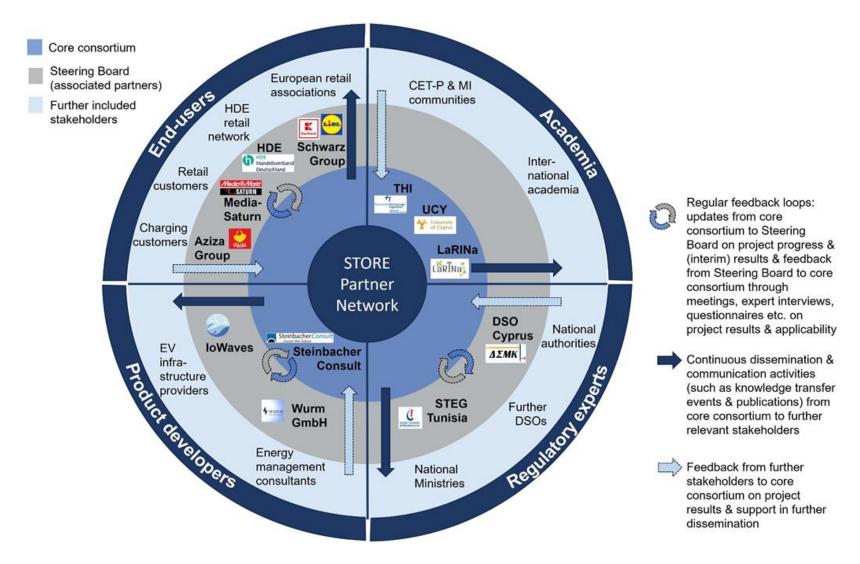


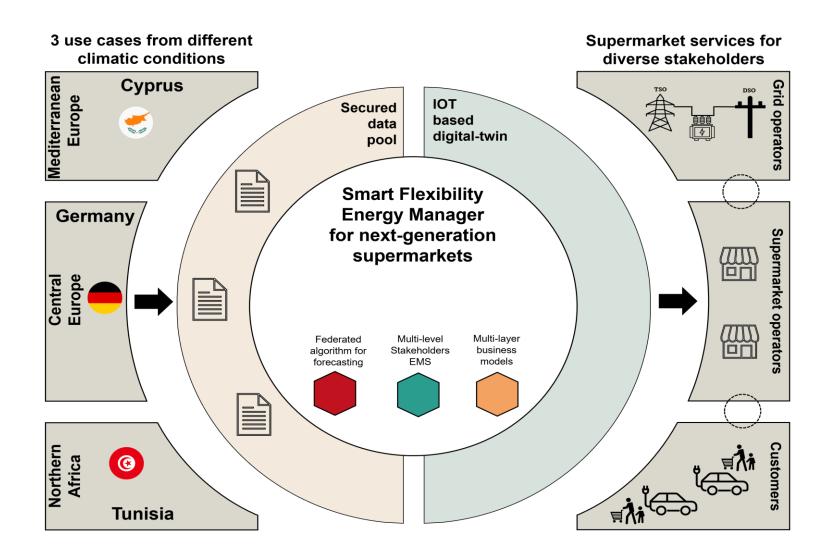
"to provide a techno-economic solution by developing an Al-driven Smart Flexibility Energy Manager (SFEM) for next-generation supermarkets equipped with large-scale EV charging infrastructure, aiming to harness flexibility potential for efficient grid integration."



Our Goals & Expected Impact

HiL Validation & Hybrid Environment


Primary goal is the AI-powered smart flexibility energy manager


STORE in the perspective of the Clean Energy Transition

STORE in the perspective of the Clean Energy Transition

Thank you!

Contact

Jiahe Chu, M.Sc. Jiahe.Chu@thi.de

Institute of new Energy Systems
Ingolstadt Technical University of Applied Science

Project Website

RENvolvelT

Javier Valdes, TH Deggendorf, Germany

Introducing our Project & Consortium

RENvolveIT – Regional Energy Networking: cross-sectional involvement through a modular interactive toolbox

miteinander

füreinander

The development of a user-friendly toolbox for energy communities including six modular core tools are integrated into a central platform.

Morphological Box

Designed for orientation. It gives information about business models incorporating economic, technological, and legal constellations.

RGB Traffic Light

Is a digital service module providing individual energy usage signals. It indicates realtime energy availability within a community.

EnerplanET

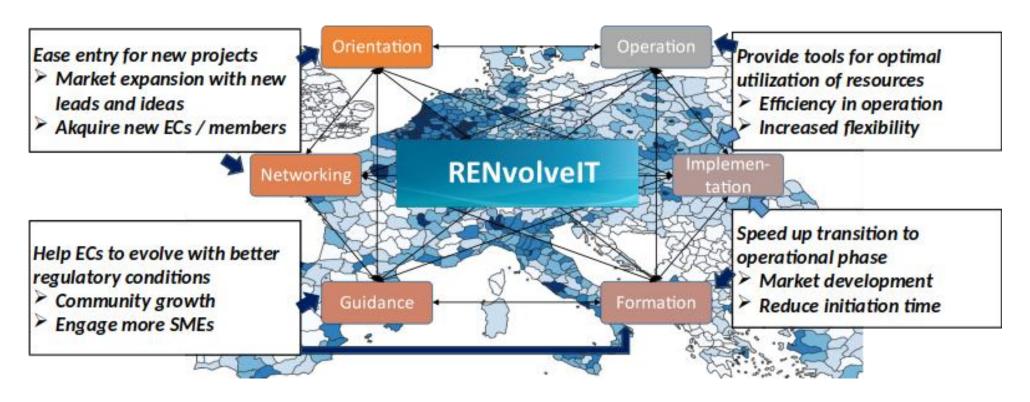
Simulates and optimises power systems, focusing on renewable energy integration.

Community Aggregation Tool

Is a software asset that takes real-time energy measurement data from smart meters.

Integration Profiles

Enable the inter-operation of independently developed systems by aligning processes and interfaces with need owner specified inter-operation requirements.


Insights Portal

Collaboration between Stakeholders (e.g. mayors, citizens, engineers..) and project developers, project and GEO Informatic Services

Our Goals & Expected Impact

Support ECs from getting an idea to optimising EC operation:

Orientation | Networking | Guidance | Formation | Implementation | Operation

Our project in the perspective of the Clean Energy Transition

- RENvolveIT integrates technology, policy, and societal aspects applying a co-design approach.
- We align with markets needs by supporting new projects and expanding existing RECs:
 - Foster investments in RECs
 - Support the viability of decentralized RE generation and sharing
- Provide access to the toolbox to all pilots prioritizing: use of open-source and open-data, dialogue among RECs, and standardize tools integration.
- Uncertainties are taken into account through flexibility and modularization.

Thank you! Contact

Javier Valdes
TH Deggendorf
javier.valdes@th-deg.de

Coffee break We will continue at 14:10 CEST

14:10 – 14:40 Upcoming project presentations

ELECTROMET - César Escobar Claros

LEG-DHC - Hussein Mroueh

Man0EUvRE - Siri Mathisen

14:40 – 15:20 Breakout rooms Q&A

15:20 – 15:25 **Q&A** to panelists

Room 1: PVT4EU, STORE, RENvolveIT

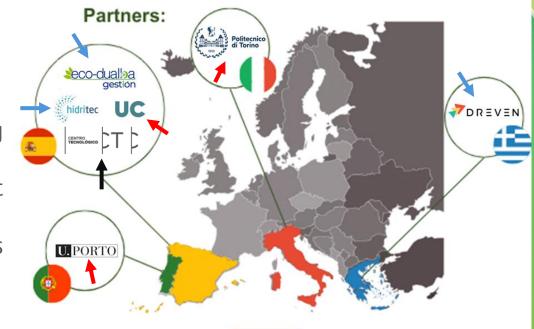
Room 2: ELECTROMET, Man0EUvRE, LEG-DHC

15:25 – 15:30 Outlook to Day 2

Direct CO2 ELECTROcatalysis for renewable METhane production

César Escobar Claros, CTC Technology Centre, Spain

Direct CO₂ **ELECTRO**catalysis for renewable **MET**hane production

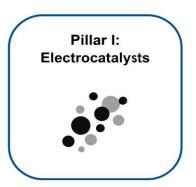


50-90% CO₂

Aims to develop a sustainable and economical method for producing renewable methane (RCH_4) from carbon dioxide (CO_2) via direct electroreduction, integrating it as a renewable fuel into the gas market.

- Coordinator: CTC
- **Duration:** 3 years (12/2024 11/2027)
- **Countries involved**: 5.
- Partners involved: 1 Research Centre, 3 Universities, 3 Industries and 2 Stakeholders.

Stakeholders:



How? → 4 Innovation Pillars

I Catalyst Design: 3 High-performance catalysts:

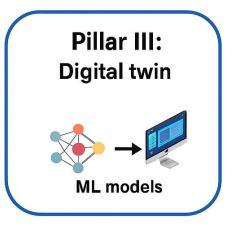
Inorganic, Organometallic (MOF) and Non-metallic (GQD).

2 Electrode Optimization: A GDE configuration and automated Spray Pyrolysis technique for the

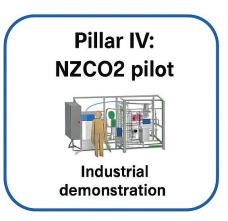
electrode's fabrication.

Spray Coater

- Targeting Faradaic Efficiency >80%, current density of 100 mA/cm².
- Lab scale reactor 5cm²
- A SWOT analysis will be employed.



How? → 4 Innovation Pillars


3 Digital Twin: Will links experimental data and predictive models to optimise reactor design,

scale up strategies and real time operation.

4 NZCO2 Pilot: Industrial demonstration with real biogas streams.

- Scaling up to 100 cm² reactor
- Lab conditions \rightarrow 100h \rightarrow 500h

Acceptance and social impact


- Rejection of biogas plants implementation:
 - Odors, increased truck traffic, potential pollution of soil and water, and changes to the landscape.
- Address these issues:
 - II Early citizen involvement and transparent communication (Workshops¹, social communications, press media, etc.). Initiatives such as JustWind4All, WENDY and Wimby are examples.
 - 🙎 🧟 Ensuring tangible local benefits.
 - • Strict environmental protection.

Projected Impact & Future Roadmap

- Conducting LCA, and LCC to evaluate social-environmental impacts and market viability.
- Will create a **roadmap** for commercial deployment that addresses technical, regulatory and social barriers. Through interactive collaboration with government agencies and industry representative.

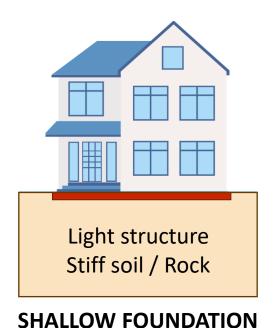
Thank you!

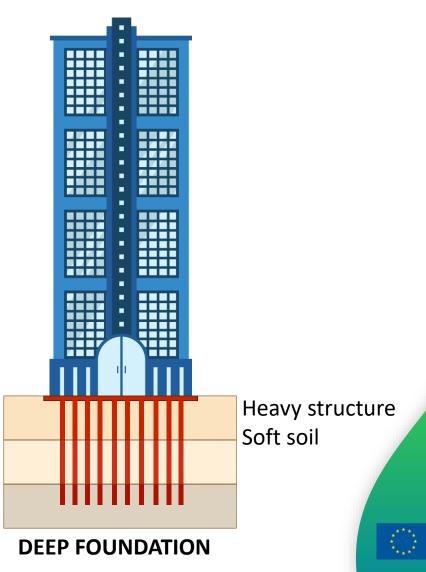
Contact

César Escobar Claros CTC Technology Centre cescobar@centrotecnologicoCTC.com

Large-scale climate neutral Energy Geostructures in District Heating & Cooling systems/networks

Hussein Mroueh, Université de Lille, LGCgE, France

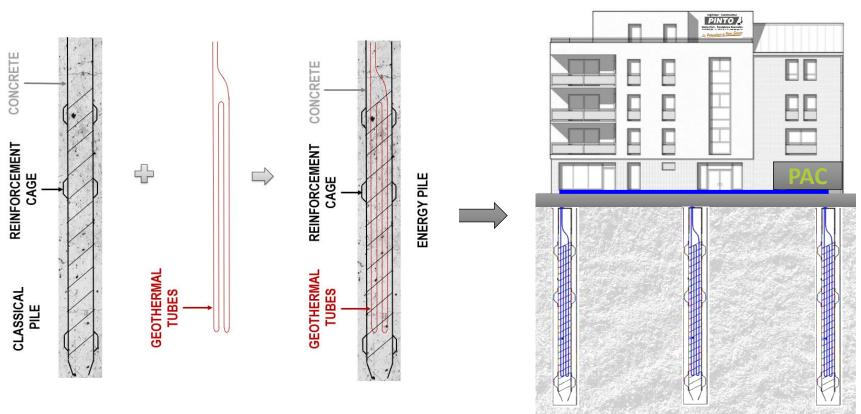



Co-funded by

the European Union

Before Introducing our Project & Consortium...

All buildings need foundations !!!



Before Introducing our Project & Consortium... Heating

Heating and/or cooling Energy piles+ Ground source heat pump (GSHP)

Large-scale climate neutral Energy Geostructures in District Heating & Cooling systems/networks

- LEG-DHC project aims at demonstrating the global feasibility of implementing **Energy Geostructures** (EGs) on a large scale, even in complex sites.
- The project focuses on analysing energy production, costs, carbon reduction, and other critical data to improve the efficiency and durability of EGs.
- LEG-DHC seeks to advance the **integration** of these structures into district heating and cooling (DHC) networks, looking to **storage** feasibility and energy **distribution**.

Large-scale climate neutral Energy Geostructures in District Heating & Cooling systems/networks

16 partners from 6 countries

- France: A. Di Donna (UGA), H. Mroueh
 (ULille), R. Vasilescu (Pinto); SETEC
- Ireland : Zili Li (UCC) → TII, CODEMA
- Italy: Diana Salciarini (UNIPG) → WISE, INGV,
 GEOLAV
- Norway: Rao Martand Singh (NTNU)
 →Sandness and Jaerbetong, FAS, Eishbeck
- Estonia: Anna Volkova (TALTECH)
- Denmark: Søren Poulsen (VIA)

Large-scale climate neutral Energy Geostructures in District Heating & Cooling systems/networks

Norwegian University of Science and Technology

Our Research Focus & Key Innovations

Geothermal Heating & Cooling production

- EGs Pilot Case Studies
- Monitoring EGs
- Modelling EGs

WP2

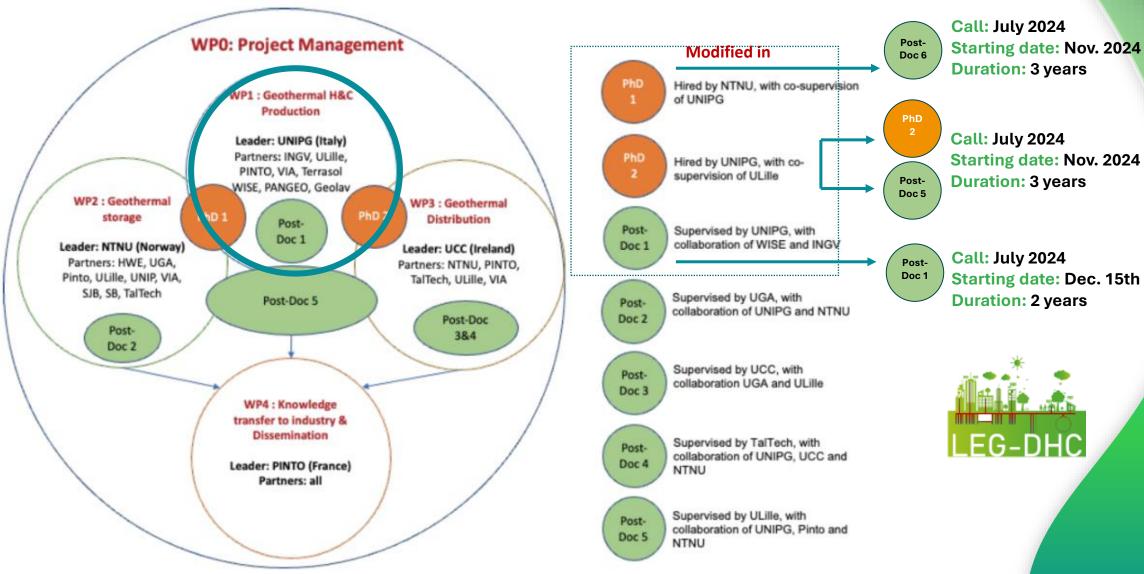
GeoThermal storage

- Thermal Sources
- Optimization of Thermal Sources
- Thermal Performance of EGS
- Mechanical Performance of EGS

WP 3

Geothermal Distribution

- Data collection in Pilot Case Studies
- 3D geographic information system (GIS) model
- Analysis of geothermal distribution in 5GDHC
- GIS simulation for geothermal distribution and 5GDHC

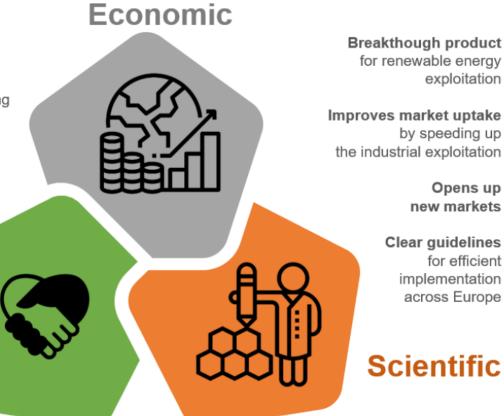


Knowledge Transfer & Dissemination

- Scientific guide, guidelines, and best practices
- Website, social media, conferences, training schools, webinars
- IPR strategy and FAIR data compliance;

Our Goals & Expected Impact

Cleaner, healthier and cheaper utilities


Makes heating and cooling more affordable

Zero pollution Heating and cooling

Helps decarbonate

The buildings sector

Social

Reinforcemnt of innovation potential for both academic and industrial sector

Improves education and training opportunities

Improves capacity building

Cross-sector coordination & Integration of R&D

exploitation

Opens up new markets

for efficient

by speeding up

Clear guidelines

implementation across Europe

European scientific cooperation

LEG-DHC

Large-scale climate neutral **Energy** Geostructures in District **Heating & Cooling** systems/

networks

Consolidates the evidence base science

The creation of a new market opens up new job oportunities

Our project in the perspective of the Clean Energy Transition

- Bridging technology, policy & society: Turning foundations into active energy systems for cities.
- Policy alignment: Contributing to EU goals under Fit for 55, EPBD & RED III.
- Adaptable solutions: Scalable design tools for diverse soils, climates & infrastructures.
- Future-ready: Resilient to climate shifts, demand changes & evolving energy markets



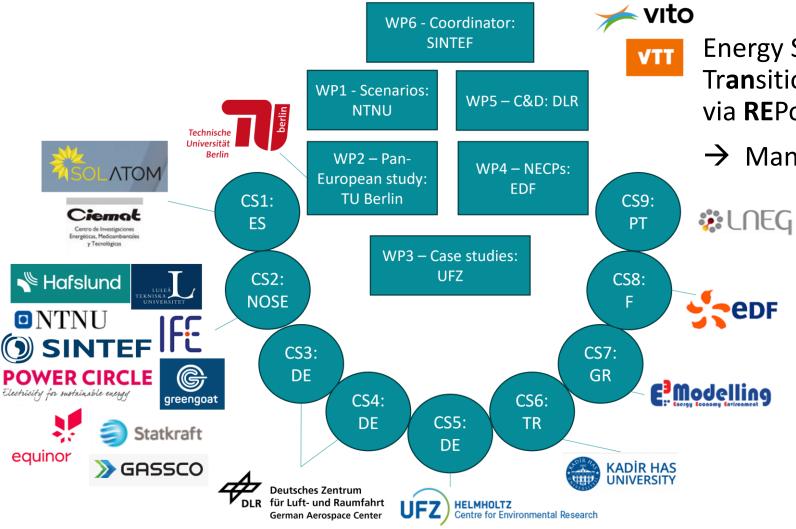
Large-scale climate neutral Energy Geostructures in District Heating & Cooling systems/networks

- Upscaling implementation of EGs from single buildings to District level
- Several pilot cases (France, Italy, Norway)
- Several real cases studies (Denmark, Estonia, Ireland)
- Scientific papers already accepted or under review
- Knowledge transfer to industry → Workshop in Denmark
 - Technical advances, business models, and financing strategies
 - December 4-5, 2025

Thank you! Contact

Hussein Mroueh Université de Lille hussein.mroueh@univ-lille.fr Roxana Vasilescu PINTO rvasilescu@pintogc.com

Man0EUvRE



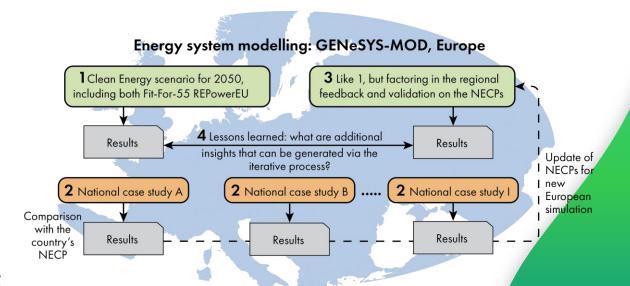
Siri Mathisen, SINTEF Energy Research, Norway

Introducing our Project & Consortium

Energy System **M**odelling for Tr**an**sition to a net-**Zero** 2050 for **EU** via **RE**PowerEU

→ Man0EUvRE

 noun: a movement or series of moves requiring skill and care.

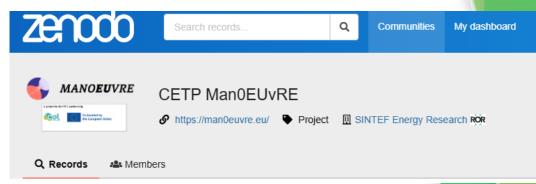


Our Research Focus & Key Innovations

 Improve and coordinate energy system modelling across Europe and provide open scientific evidence and research-based results that facilitate emissions reductions for a clean energy transition, while incorporating the measures suggested in recent policy suggestions

Energy system modelling:

- Pan-European scenarios finding pathways for CET
- Regional case-studies using pan-European scenarios → feedback to pan-European model
- Pan-European perspective to NECP development, enabling joint undertaking with lower costs



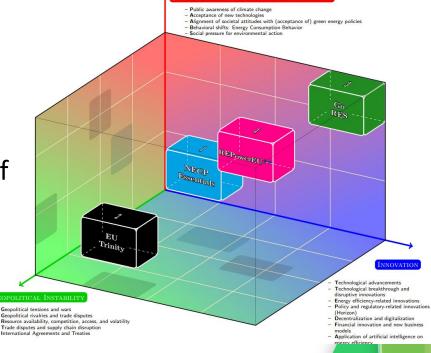
Our Goals & Expected Impact

- End goals:
 - EU EnVis-2060 scenarios
 - Pan-European energy system model dataset in IAMC format including feedback from case studies
 - Supporting strategic priorities for European policy makers
 - Combining established strengths in energy system modelling and work towards consistent models and standardised data formats
- Impact
 - Value of energy system models → industry and policy makers
 - NECPs: Structured feedback and suggestions
 - Transnational ← → national energy system perspectives
 - Effects of variabilities and flexibility on power systems
 - Openly available datasets → contribute to industrial and academic research and plans

Our project in the perspective of the Clean Energy Transition

 Pan-European scenarios for energy transition: narratives describing societal changes along several axes

 NECP Essentials: NECP WEM until 2040 → continuation of today's trends


 REPowerEU++: Paradigm shift – energy independence in the EU

• Trinity: Pessimistic

GoRES: Optimistic

 Feedback from 9 case studies from different regions and sectors ensure robustness of results with respect to geographical and sectorial differences

- Stochasticity:
 - Different scenarios
 - Climatic variability

Co-funded by the European Union

Siri Mathisen SINTEF Energy Research (Norway) Siri.Mathisen@sintef.no

Q&A session

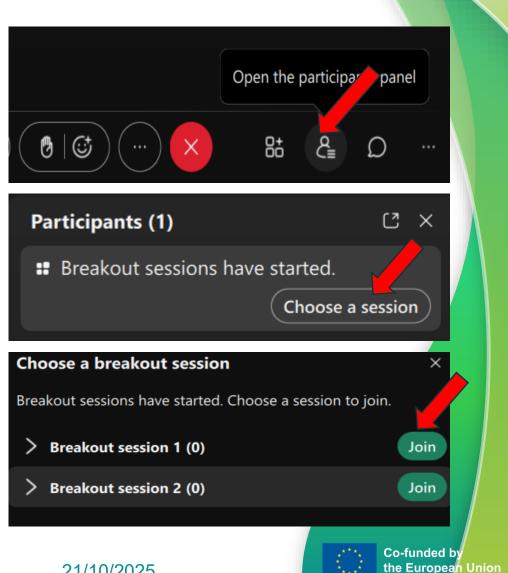
Group moderators

Michael Huebner
CETPartnership Coordinator
Federal Ministry Innovation,
Mobility and Infrastructure
Republic of Austria

Isabel Cabrita
Professor/Expert
Portugal Science and Technology Foundation
Lisbon, Portugal

Group allocation

Rooms	Projects	Moderator
Room - 1	PVT4EU, STORE, RENvolveIT	Michael Huebner
Room - 2	Man0EUvRE, LEG-DGC, ELECTROMET	Isabel Cabrita



How to join breakout rooms

Please go to partcipants panel on the bottom right.

 In the participants panel, please select choose a session at the top.

Click join to enter a breakout-room

We are in the breakout rooms

Rooms	Projects	Moderator
Room - 1	PVT4EU, STORE, RENvolveIT	Michael Huebner
Room - 2	Man0EUvRE, LEG-DGC, ELECTROMET	Isabel Cabrita

Wrap-up of group discussions

Outlook on Day 2

Funding the Future: Investor Insights & Innovation Readiness

09:00 - 09:55 Introdu

Introduction & Presentations

- Recap of Day 1, Introducing the Knowledge Community and Impact & Exploitation activities
- Presentation by Maria Velkova, EC Deputy Head of Unit Finance for Innovation
- Presentation by Dr. Alex Cruz, Emerging Technologies Leader Baker Hughes
- o Q&A

10:00 - 11:45

Two Breakout-room Sessions (in parallel)

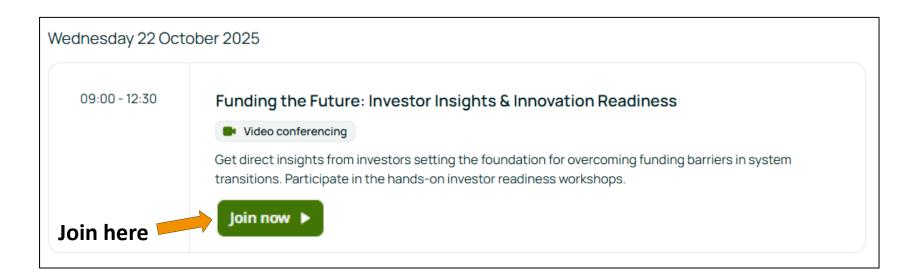
- Knowledge Community Session: Peer Learning for System Transition Challenges
- Impact Session: Investor Readiness for System-Scale Demonstration

11:45 – 12:10 Wrap up and next steps

12:10 - 12:15

Final words from the coordinator

Attention!!: new link for tomorrow's session



How to join?

Funding the Future: Investor Insights & Innovation Readiness

Participate in the hands-on investor readiness workshops that help demonstration-ready projects secure funding and promote collaborative peer learning sessions where early-stage innovators tackle transition challenges together

Thanks!

Visit us at cetpartnership.eu

